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TECHNICAL NIEMORANDUM X-53802 

RELATIVISTIC PHYSICS OF CLOCK§ AND THE 
SYNCHRONOUS ORB I T  CLOCK EXPERIMENT 

SUMMARY 

The basic principles of special relativity and inertial reference frames 
are discussed. The Lorentz transformation is given and expressions for the 
proper time in an inertial frame of reference are developed. A concept of the 
mace-time metric is developed from the properties of non-inertial systems. 
Expressions for differential distance and time intervals are developed from the 
space-time metric. Some of the basic properties of curvilinear coordinates, 
tensors, and covariant differentiation are expounded. Elementary properties of 
the Riemann curvature tensor and the development of the empty space gravi- 
tational field equations are presented. Comments are made about the gravi- 
tational field equations and some consequential space-time metrics. The com- 
bined effects of uniform rotation and the gravitational field on the space-time 
metric, and hence proper time, are discussed and developed. Finally, expres- 
sions are developed which measure the gravitational and relative motion effects 
on frequency comparisons between two “identical“ atomic oscillators - one 
earth fixed and the other in synchronou’s orbit above the earth-fixed oscillator. 
The first -order Doppler effect is theoretically eliminated from the comparison. 
Perturbations will be treated in a later paper. 

1. INTRODUCTION 

This report is the first of a series of studies to be made in support of 
the space experimental program for testing the theory of relativity. To make 
this and subsequent reports of maximum value to participants in this program, 
a resume of the theory of relativity is included. For those who wish to go into 
the theory in greater detail, this r6sum6 will serve as an outline for the study 
of works by L. D. Landau and E .  M. Lifshitz, Robert B. Leighton, P. G. 
Bergmann, G. C. McVittie, V. Fock, C. Mhller, andR. C. Tolman; these 
works are  listed in the Bibliography, along with other documents that are  re- 
lated to this report. 



1 1 .  PRINCIPLES OF SPECIAL RELATIVITY 

To order natural phonomena intelligently, one must, of necessity, have 
a system or  frame of reference. A system of reference is understood to be 
composed of a set of coordinates that serve to indicate the spatial position of a 
naturally occurring phenomenon with identical clocks fixed in this system for 
the purpose of indicating time. 

Suppose there exists a point mass that moves freely with constant 
velocity, i. e. , without influence from external forces. A reference system that 
describes the force-free motion of such a point mass will be defined as an 
inertial reference s ys tem . 

Now suppose another reference system that moves uniformly relative 
to an inertial system of reference. Such a system is likewise inertial since 
every free motion in this system will be linear and uniform. By definition, 
many inertial frames that move uniformly to one mother can be obtained arbi- 
trarily. 

Therefore, one must postulate the first principle of special relativity: 
the laws of nature are  identical in all inertial systems of reference. This means 
precisely that the equations describing any law of nature have one and the same 
form when written in terms of coordinates and time in different inertial systems. 

Many of the interactions of natural phenomena are  classically assumed 
to propagate instantaneously from one phenomenon to another. This is a very 
good first approximation in quite a few cases of such naturally occurring 
phenomena. Careful experimentation will show that instantaneous interactions 
a re  nonexistent in nature. Therefore, one cannot base a correct description of 
the laws of nature on an assumption of instantaneous propagation of interactions. 
Any change in a locally occurring phenomenon will, in fact, influence another 
phenomenon a finite distance away only after the lapse of a certain interval of 
time. If the distance between the two bodies is divided by the lapsed time 
interval the velocity of propagation of the interaction is obtained. 

We should, in the strictest sense, speak of the maximum velocity of 
propagation of interaction. It is only after the maximum velocity of propagation 
of interaction that a change in a natural phenomenon begins to manifest itself in 
another naturally occurring phenomenon. It is clear that motions involved in 
naturally occurring phenomena cannot exceed the maximum velocity of propaga- 
tion of interactions. If such motions should occur, one could realize an inter- 
action with a velocity exceeding the maximum possible velocity of propagation. 
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The second principle of special relativity will now be postulated: the 
maximum velocity of propagation of interactions is a constant in free space and is 
the same in all inertial systems of reference. The constant is the velocity of 
light in a vacuum and is usually designated by the small letter c. 

Incidentally the laws of classical mechanics must still be valid in 
the limit c - a in any subsequent theory that develops based upon the two 
above postulates. This, of course, implies that an instantaneous velocity 
exists for the propagation of an interaction, and that time is absolute in 
classical mechanics. This would mean that the properties of time are assumed 
to be independent of the system of reference, i.e. , that any two phenomena oc- 
curring simultaneously for any particular observer occur simultaneously for all 
others o r  that the interval of time between two given events must be identical for 
all systems of reference. 

tion of clocks. Suppose that an arbitrary number of identical clocks a re  posi- 
tioned at  a fixed set of coordinates within an inertial frame of reference. Also 
assume that the positioning (with a standard reference of length) does not affect 
the identity of the clocks. Let one of the clocks and an observer be co-located 
at the origin. A light pulse may be sent from the origin to each of the other po- 
sitioned clocks and returned to the origin for a comparison of the reading on 
each of the other clocks. By allowing for the propagation time of the light pulse, 
the clocks fixed in the inertial system can be synchronized by defining all of their 
readings to be some common value of time, to. All the clocks fixed in the inertial 
system are  then said to be synchronized. 

It is appropriate at this time to define what is meant by the synchroniza- 

A s  a result of the two principles of relativity, time cannot be absolute 
because it elapses differently in different systems of reference. There is mean- 
ing in the statement that a definite time interval has elapsed between any two given 
events i f  and only if a frame of reference to which this statement applies is in- 
dicated. Figure I shows that simultaneous events in one reference frame will not 
necessarily be simultaneous in other frames. 

Consider two inertial frames of reference, K and K', as  illustrated in 
Figure I, where K' moves with constant speed v relative to K along the x( x') axis. 
In the K' system let BA=CA, and let light signals initiate from point A in both 
directions toward B and C. The speed of li&t for all inertial systems is c; hence, 
the propagation velocity of the light signal in K' is c. The signals will reach B 
and C simultaneously in the K' system, but the arrivals of the signals at B and C 
are not simultaneous for an observer in the K system. According to our postulates 
of relativity, the velocity of propagation of the signal emanating from point A in 
the K' system has the same value c in the K system. But, relative to the K 
system, the point B moves toward the signal source while point C moves away 
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I 

- A +  C 

FIGURE i. RELATIVELY MOVING INERTIAL SYSTEMS 

from the signal. Hence, in the K system, the signal will reach point B earlier 
than point C. Thus the two events are simultaneous to K' but not simultaneous 
to K. 

The following definitions and concepts will be needed: 

i. Event: A physical phenomenon described and characterized by the 
place where it occurred and the time when it occurred relative to a coordinate 
frame of reference. 

2. World Points: Events that are  specified in four-dimensional space 
by three space coordinates and time. 

3. World Line: Each physical process in four-dimensional space cor- 
responds with a certain line. This line is called the world line. Mathematically 
it can be expressed as  a scalar function [f (x,y,z,t)] of the space coordinates 
and time set equal to zero. 

In Figure i, the axes x and x' coincide, while the y and z axes are 
parallel to y' and z', respectively. We designate the time in the system K and 
K'by t and t'. 
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Let the first event consist of sending out a signal, propagating with the 
velocity of light, from a point having four-dimensional coordinates XI, yl, ZI, 

ti in the K system. We observe the propagation of this signal in the K system. 
Let the second event consist of the arrival of the signal at point x2, y2, 22, t 2 .  

The signal propagates with velocity c ;  the distance covered by it is, therefore, 
ct t? - t d )  . On the other hand, this same distance equals [ (x2 -XI) + (y2 - yl) 
+ (z2 - 21) ] 
in the K system: 

Thus, we can write the following relation between the two events 

The same two events, i. e. ,  the propagation and reception of the 
signal can be observed from the K' system: let the coordinates of the first e- 
vent in the K' system be xl1, yt1, zT1, VI, and of the second event be x ' ~ ,  yt2, zT2, 
V2. Since the velocity of light is the same in the K and K' systems, we have 
similarly to equation (11-I) , 

(I1 -2) 2 (x'2 - x'1)2 + (y'2 - y'1)2 + (z'2 - z'1)2 - C2(tT2 - t'l) = 0 .  

If XI, yl, ZI, ti, and x2, y2, z2, t2 are the coordinates of 
system, then the quantity 

two events in the K 

is called the interval between these two events. Likewise, if x'l, yll, 2'1, t'l, 
and x'2, y'2, 2'2, t 1 2  a re  the coordinates between any two events in the K' system, 
then the quantity 

5'12 = [C2(t'2 - t ' 1 ) 2  - (XI2 - X'I) 2 - (y'2 - - ( 2 ' 2  - Z' l )  I (11-4) 

is called the interval between these two events. Thus, it follows from the prin- 
ciple of invariance of the velocity of light that i f  the interval between two events 
is zero in one coordinate system, then it is equal to zero in all other inertial 
coordinate systems. 

If two events are  infinitely close to each other, then the intervals ds, 
ds' between them are  defined by 

ds2 = c2dt2 - (dx2 + dy2 + dz2), (11-5) 

(I1 -6) 
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A s  shown in equations (11-I) and (11-2) , if ds = 0 in one inertial system, 
then ds' = 0 in any other system. On the other hand, ds and ds' are infinitesimals 
of the same order. Their difference can at most be linear and constant. Hence, 
it follows that ds2 = a(dsT)2 where rracc is a function that can depend only on the 
absolute value of the relative velocity of the two inertial systems. Tt cannot de- 
pend on the coordinates o r  the time, since different points in space and different 
moments in time would-not be equivalent, which would be in contradiction to the 
homogeneity of space and time. Also it cannot depend on the direction of the 
relative velocity, for this would contradict the isotropy of space. 

Consider three reference systems K, Ki, K2, and let v and v2 be the 
velocities of systems Ki and K2 relative to K. Then, 

and, similarly, one can write 

(11-7) 

where vi2 is the absolute value of the velocity of Kz relative to KI. Comparing 
equations (11-7) and (11-8) , one finds that it is necessary to have 

(I1 -9) 

But vi2 depends not only on the absolute values of the vectors 31 and yz, but also 
on the angle between them. However, the angle does not appear in the formula 
on the left side of equation (11-9). Therefore, the formula can be correct only 
if the function a(v) reduces to a constant that is equal to unity according to the 
same formula. Hence, 

ds2 = (ds') ', (11-10) 

and from the equality of the infinitesimal intervals there follows the equality of 
finite intervals: s = s'. 

Thus one arrives at a very important result: the interval between two 
events is the same in all inertial systems of reference, i. e.,  it is invariant 
under transformation from one inertial system to another. This invariance is 
the mathematical expression of the constancy of the velocity of light. 
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I 1 1 .  THE LORENTZ TRANSFORMATION AND PROPER TIME 

If one suspects that time is absolute o r  is some independent, universal 
quantity not connected with space, he might deduce from Figure I, that the 
coordinate transformations a re  

This transformation is generally called the Galilean transformation. The non- 
invariance of Maxwell's field equations of electrodynamics under such a trans- 
formation led Lorentz (1904) to suspect that time must, in fact, be treated on an 
equal basis with the three length dimensions of space, instead of as an independent 
universal scalar parameter. The null results of the Michelson-Morley ex- 
periment added quite a bit of support to this position. Lorentz and Einstein 
(1905) realized independently that the Galilean transformation must be replaced 
with a new relationship between the two inertial frames of reference that satis- 
fies the requirements of equations (11-I) and (11-2) , and which are in agree- 
ment with the Galilean transformation if  the two systems a re  moving very slowly 
with respect to each other. 

An inspection of equations (11-1) and (11-2) and the Galilean transforma- 
tion reveals that y and z create no problems, but that there are some terms in- 
volving x and t that must, somehow, be made to disappear. This must be done 
without disturbing the combination (x  - vt) in the transformation, since the 
speed of one system with respect to the other must mean the rate at  which a 
point, fixed in one system, appears to move past the other system. Because of 
the homogeniety and isotropy of space, the transformation must be linear, i. e.,  
straight lines in one system must transform into straight lines of the other 
system. Hence, we can at most modify the first equation of the Galilean trans- 
formation by a constant factor. Thus, an attempt shall be made to retain the x 
transformation in the relatively simple form 

x ' =  y ( x  -vt)  (111-2) 

where y is some constant factor very nearly equal to unity under the conditions 
of everyday experience. Further thought reveals that the equation t' = t cannot 
be correct, since no rearrangement of space coordinates alone can give wave 
pulses that a r e  simultaneously concentric spheres in both systems. The sim- 
plest modification of the time transformation is one which contains only x and t 
linearly : 
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t' = At + BX ( I11 -3) 

where A should be nearly unity and B nearly zero under ordinary familiar con- 
ditions. 

The two systems K and K' of Figure1 a re  in uniform relative motion. 
Now suppose that at some instant the two origins coincide. At that instant let 
two observers, each at rest in K and K' respectively, define ti = t'i = 0, and 
let a short light pulse be emitted from the origin such that xi = x'i = y1= y'i = 
zi = z'i = 0 of equations (11-1) and (11-2) . Suppose that each observer has set 
up photoelectric cells and time recorders a t  various points fixed in their re; 
spective systems to follow the progress of the wave pulse as it expands in all 
directions from the source. Now drop the subscript 2 in equations (11-1) and 
(11-2) and note that the equation of the wavefront has the same form to each 
observer in his system of reference. The K observer will say that 

x2 + y2 + 2 2  - = 0 (111-4) 

is the equation of the wavefront, while the K' observer will say 

(x')2+ (y')2+ ( 2 0 2  - c2(t')2= 0. (I11 -5) 

Let us now insert equations (111-2) and (111-3) along with the relationships 
y' = y, z' = z, into equation (111-5): 

( y 2  - B2c2) x2 + y2+ z2 + ( y 2  v2 - A2 c2) t2 - 2(ABc2 + y2v)Xt = 0 .  (ID-6) 

By comparing equations (111-6) with (1II-4), one sees that 

These three equations suffice to determine A, By and y in terms of v; the re- 
sult is 

-112 
y = A = ( l - $ )  , B = - T  VY 

V 

C 
If one calls p = -, the transformation equations are 

(I11 -8) 

x' = y(x -pet), 

8 
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Y' = Y, (111- 10) 

z' = 2, (111- I I) 

t'=.(t-E) . (ID-12) 

The above linear transformation of coordinates and time is a special form of a 
Lorentz transformation where uniform rectilinear motion is restricted to the 
x (x') direction of each system. The inverse of the above transformation is 
found to be 

x = y (x' + PCtC)  (111-13) 

Y = Y' ,  (111- 14) 

z = 2') (ID-15) 

t = y (t7.y) (111-16) 

Suppose that in a certain inertial reference system there are clocks 
that a re  moving with constant speed relative to an observer in an arbitrary 
direction. In particular, suppose an observation is made from the K system on 
the K' system of clocks rigidly at rest and synchronized in the K' system (Fig. 1). 
Also imagine a number of clocks rigidly at rest and synchronized in the K-rest 
frame. 

the K rest frame, the moving clocks go a distance ( d x )  . Whattime interval, dt', 
is indicated for this period by the moving clocks? Of course in a system of 
coordinates linked to the moving clocks, the latter a re  at rest, i. e. , dx' = dy' = 
dz' = 0. Because of the invariance of the intervals, 

In the course of an infinitestimal time interval dt, read by a clock in 

ds2 = c2 dt2 - dx2 = c2 (dt') 2, (III-17) 

from which 

(111- 18) 
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or  else 

dt' = dt I --$& . (111-19) 

But 

where v is the velocity of the moving clocks; therefore, 

(111-20) 

(111-2 i) 

Integrating this expression, we  can obtain the time interval indicated by the 
moving clocks when the elapsed time according. to a clock at rest is t2 - ti; hence, 

( 111 -22) 

The time read by a clock moving with a given object is called the proper time 
for this object. Equations (111-17) and (111-22) express the proper time in terms 
of the time for a system of reference from which the motion is observed. 

For uniform rectilinear motion along the x axis we may use equation 
(111-16) to calculate the result of equation (111-22) for the same spatial location 
x' in the K' system. The two observers in the K'and K' systems, respectively, 
therefore disagree on the length of the time interval. By use of equation (111-12) , 
an observer in K' examining clocks rigidly attached to K sees the result 

( III -23) 

Hence; we conclude that each observer will find that a clock in the other's sys- 
tem is running at a slower rate than his own. This effect is called the special 
relativistic time dilatation, and has been verified experimentally in many various 
ways. 

The results just derived may appear somewhat paradoxical at first 

10 



glance, for how can an observer at rest  find a moving observer's clocks run- 
ning slower than his own? The resolution of this apparent paradox lies in the 
realization that the experiments by which these observers make these com- 
parisons a r e  symmetrical but not identical. This is because the term "simul- 
taneous" no longer has the universal significance that was assumed in writing 
the Galilean transformation. 

Another puzzling aspect of the time dilatation is the detailed mech- 
anism by which the rate of a clock changes. A clock is, after all, a physical 
device whose motions a re  governed by the laws of nature. It seems strange in- 
deed that one could conclude that the rates are the same for all clocks, no mat- 
ter what. their design. Why should an hourglass behave in just the same way as 
a pendulum clock or  as an oscillating electrical circuit? The answer is to be 
found in the form taken by the laws of nature rather than in a detailed analysis of 
each possible kind of clock. For i f  the laws which govern the operation of clocks 
can be written in a form that is covariant with respect to the Lorentz trans- 
formation, then it will automatically be true that the rates of all clocks gov- 
erned by these laws will change in the same way under the Lorentz transforma- 
tion. Since all ordinary clocks obey the laws of mechanics and electrodynamics, 
all that is required is that these laws a re  covariant with respect to the Lorentz 
transformation. Although easily proven, it will not be done here. 

Consider a clock composed of an electric-flash tube and a photoelec- 
tric cell, arranged as in Figure 2. 

Y' L 5' SYSTEM 

BE 

AN S' -CLOCK 

FIGURE 2. A PULSE LIGHT CLOCK AT REST 

The flash tube and photocell are side by side with a light baffle between them, and 
a circuit is so arranged that, when the photocell receives a pulse of light, it 



causes the flash tube to emit another pulse of light with a negligible delay. The 
"period" of this clock is then equal to the time required for a light pulse to 
travel from the flash tube to the mirror and back to the photocell, i. e. , 

(III -24) 

Now consider the operation of this clock as viewed by an observer mov- 
ing to the left with speed v. The observer sees the clock as moving to the right 
at speed v and analyzes its operation as shown in Figure 3.  

PULSE 
REFLECTED 

FIGURE 3.  A UNIFORMLY MOVING PULSE LIGHT CLOCK 

Because the clock is moving, the light must proceed in a diagonal path from the 
flash tube to the mirror and thence to the photocell. By the second postulate, the 
light travels on this diagonal path at the same speed c as  it travels directly back 
and forth in S'. It must, therefore, take longer for the light to return to the 
photocell, as seen by S than as seen by SI. Thus, 

c T =  2 J (1/2 v T ) ~ +  ( D ) 2 ,  (111-25) 

cT = ( v T ) ~  + (2D)2 , 

C2T2 = (vT)~+ (2D)2 , 
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= T'y . 2D T =  

e 

(ID -26) 

The Lorentz transformation for arbitrary uniform rectilinear motion 
may be obtained by rotating the K reference system through a set of Eulerian 
angles while the time is imagined to be held at some fixed value for an instant. 

IV. PROPERTIES OF NON INERTIAL REFERENCE SYSTEMS, 
THE SPACE-TIME METRIC, AND DISTANCES AND TIME INTERVALS 

In an inertial system of reference, in Cartesian coordinates, the inter- 
val ds is given by 

ds2 = c2 dt2 - (dx2 + dy2 + dz2), (IV-I) 

and upon transforming to any other inertial reference system under a Lorentz 
transformation, the interval retains the same form. However, if we transform 
to a noninertial system of reference, (ds)2 will no longer be a sum of squares of 
the four coordinate differentials. 

For example, let us transform to a uniformly rotating system of 
coordinates ( Fig. 4) : 

X = x ' c o s  (a) - y '  sin (ut), (IV-2) 

y = X I  sin (&) + y' cos (ut) ,  

z = z', 

(IV-3) 

(IV-4) 

where 0 is the angular velocity of the rotation directed along the z axis. The 
interval takes on the form 

(IV-5) - 2u x' dy' dt. 
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z z' 

No matter what the law of transforma- 
tion of the time coordinate, this expres- 
sion cannot be represented as a sum of 
squares of the coordinate differentials. 

Thus in a noninertial system of 
reference the square of an interval ap- 
pears as a quadratic form of general 

Y' type in the coordinate differentials, that 
y is, it has the form 

(IV-6) 2 i k  ds = g. dx dx ik 

where the g a re  cer ta in  functions of 

the space coordinates xi, x2, x3 and the 
time coordinate xo. Thus, when we use 

sional coordinate system xo, xi, x2, x3 is 
SYSTEM curvilinear. The quantities g determ- 

ining all the geometric properties in each 
curvilinear system of coordinates, represent the space-time metric. The g 
are  symmetric in the indices i and k ( g  = g ) , In,an inertial system of r e E  ik k j  erence when we use Cartesian space coordina es xi' 2 ' 3  = x, y, z ,  and the time 
xo = et, the quantities g 

X 

ik 
X' 

FIGURE 4. NONINERTIAL, U N -  a noninertial system, the four-dimen- 
FORMLY ROTATING COORDINATE 

jk' 

a r e  ik 

gli = g22 = g33 = - i; goo = 1; gik = o for i f  k. (IV-7) 

We call a four-dimensional system of coordinates with these values of g 
Galilean. ik 

When the values of the gik become non-Galilean and in general functions 
of the space coordinates and time, they represent functional variations from 
which one can determine certain and specific force fields. The natural gravi- 
tational field we will see is represented by a metric of space-time, as de- 
termined by the quantities g ik' metrical properties of space-time are determined by physical phenomena, and 
are not intrinsic properties of space and time. 

The important thing to remember is the geo- 

The theory of force fields, constructed on the basis of the theory of 
relativity, is called the general theory of relativity. It was established by 
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Einstein (and finally formulated by him in 1916), and represents probably the 
most beautiful of all existing theories. It is remarkable that it was developed 
by Einstein in a purely deductive manner and only later was substantiated by 
astronomical observations. 

In the general theory of relativity, it is generally impossible to have a 
system of bodies that are fixed o r  move uniiormly relative to one another. This 
result essentially changes the very concept of a system of reference in the gen- 
eral theory of relativity, as compared to its meaning in the special theory. In 
the latter, a reference system is a set of noninteracting bodies at rest o r  moving 
uniformly relative to one another. Such systems of bodies do not exist in the 
presence of a variable gravitational field, and for the exact determination of the 
position of a particle in space we must, strictly speaking, have an infinite number 
of bodies that fill all the space like some sort of "medium. '' The specific ap- 
pearances of physical phenomena, including the properties of the motion of 
bodies, become different in all systems of reference. 

In general relativity, the choice of a coordinate system is not limited 
in any way; the triplet of space coordinates xi, x2, x3 c& be any set ofquantities de- 
fining the position of bodies in space, and the time coordinate xo can be defined 
by an arbitrarily running clock. The question arises of how, in terms of the 
values of the quantities xi, x2, x3, xo, one can determine actual distances and 
time intervals. 

First one must find the relation of the proper time (the time read by a 
clock moving with a given object), which from now on shall be denoted by T ,  to 
the coordinate xo. To do this, one considers two infinitesimally separated e- 
vents, occurring at one and the same place in spatial position. Then the interval 
ds between the two events is just cdT, where dT is the proper time interval be- 
tween 9 tr;o events. Setting dxi = dx2= dx3= 0 in the general expression ds2 
= gik dx dx , one finds that 

ds2 = c2 dT2 = goo ( dxo) 2, 

from which 

(IV-8) 

(IV-9) 
C 

o r  else, for the time between any two events occurring at the same point in space 
(or  spatial position) , 

15 



(IT-IO) 

00-  

0 .y# 

-, -. 
xo :. 

\ 

This relation determines the proper o r  actual time interval for a change of the 
coordinate xo at a given place in space. 

Suppose, as  in Figure 5, a light 
signal is directed from some point B in 
space (with coordinates x + d x a )  to a 
point A infinitely near to it (and having 
coordinates xa!) and then back over the 
same path. The time (as observed from, 
point B) required for this, when multi- 
plied by c,  is twice the disiaice between 

xo + (dx0)* 
a! 

* x 0  + (dx'), 

We now determine the element dl of spatial distance. In the special 
theory of relativity, we can define dl as the interval between two infinitesimally 
separated events occurring at the same time. In the general theory of relativ- 
ity, it is usually impossible to do this, i .  e. , it is impossible to determine dl 
by simply setting dxo = 0 in ds. This is related to the fact that in a force field, 
the proper time at different points in space has a different dependence on the 
coordinate x". 

FIGURE 5.  LINES REPRESENTING One now writes the iniervai, de- 
WORLD POINTS noting the space and time coordinates: 

where it is understood that one sums over repeated Greek indices from I to 3. 
The path of an electromagnetic signal from one point in space to another point 
in space constitutes what is commonly referred to as a null geodesic. The 
iiiterval, ds, is ZIXG by definition. Nence, the interval between the evcnts cor- 
responding to the departure and arrival of the signal frclm one point to the other 
is q u a l  to zero. Setting (ds) = 0, we find two roots: 2 
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corresponding to the propagation of the signal ir, the two directions between A 
and B. If xo is the moment of arrival of the signal a t  A the times when it left 
B and whefi it will return to B are xo + (dx') 1 and xo + (dx') 2, respectively. In 
Figure 5, the solid lines are  the world lines corresponding to the given coordf- 
nates x 2nd x + ha, while the dashed lites a re  the world lines of the sigxals. 
The ffitei3-d of rrtime" between the departure 01 the signal and its retum tc the 
original point is eqGal to 

@ CY 

Now by using equation (IV-9), one obtains the proper time interval: 
go, gap 

-2  + dxCY dxp 
goo - g a p  

(dT)21 =-' 
C 

(IV-13) 

{ IV- 14) 

Evidently, the spatial distance dl between the two points can be obtained from 

and comparison with equation (IV- 14) yields 

One defines 

QIV- 16) 

(IV- 17) 

and writes the expression defining the infinitesimal spatial distance in terms of 
the space coordinates as 

QIV-18) 
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The expression y is the three-dimensional metric tensor determini 
ayP , o r  the geometric pro erties of real space. It must be r 

LYP 
also 

time. For this reason, it is meaningless to integ 
depend on the world line chosen between the two 
a rule, in the general theory of relativity, the concept of a definite distance be- 
tween bodies loses its meaning, remaining valid only for infinitesimal distances. 
The only case where the distance can be defined also over a finite domain is 
that in which the gik do not depend on the time, so that the integral of dl along a 
space curve is path dependent and has a definite meaning physically. 

generally depend on x T: so that the space metric y 
dl; such an 1 
space points. Thus 

The definition of simultaneity in the general theory of relativity will now 
be discussed, i. e. , the question of synchronizing clocks located at different 
points in space, o r  the setting up of a correspondence between the readings of 
these clocks will now be discussed. Such a synchronization must be achieved 
by means of an exchange of electromagnetic 'signals between two points. 
Considering the process of propagation of signals between two infinitely near 
points A and B (a s  in Figure 5 ) ,  one should regard as simultaneous with the 
"time" xo at the point A that reading of the clock at point B which is halfway 
between the moments of departure and return of the signal to that point, i. e. , 
the moment 

xo + ( 4 x 0 )  = xo + 1/2 [(dXO)2 + (dxo)l ] . (IV- 19) 

Using equations (IV-i2. i) and (IV-i2.2),  one finds that the difference in the 
values of the 
points is given by 

xo for two simultaneous events occurring at infinitely near 

(IV-20) 

This relation enables us to synchronize clocks in any infinitesimal region of 
space. Multiplying equation (IV-20) by goo and bringing both terms to-one side, 
one'can state the condition for synchronization in the form & = goi dx' = 0; the 
"covariant differential" dxo between two infinitely near simultaneous events must 
be equal to zero. 

ppose there exists an initial point D on an open curve in space where a 
clock is located. An identical clock is located at some arbitrary distance away 
at a point E on the open curve in space. By summing over "infinitely many1' 



infinitesimal distances of space one can synchronize clocks along any open curve: 

(IV-2 i) 

where Sxo is the difference between the values of world time for two simultane- 
ous events occurring at different points in space. 

As a rule, synchronization of clocks along a closed contour turns out to 
be impossible. In fact, starting out along the contour and returning to the 
initial point, one would obtain for Sxo a value different from zero, i. e., 

(IV-22) 

in general. Thus, it is a fortiori impossible to synchronize clocks over all 
space. The exceptional cases are those reference systems in which all the 
components goa! are  equal to zero. One should also assign to this class those 
cases where the go,, can be made equal to zero by a simple transformation of the 
time coordinate, which does not involve any choice of the system of objects 
serving for the definition of the space coordinates. %deed, the integral in e- 
quation (IV-22) is identically zero if the sum goa! dx / goo is an exact differ- 
ential of some function of the space coordinates. But such a case would simply 
mean that we are  actually dealing with a static field, and that all the goa! could 
be made equal to zero by a transformation of the form xo -xi + @ (x a! ) . 

V. CURVILINEAR COORDINATES, BAS I C  PROPERTIES OF 
TENSORS, AND COVARIANT DIFFERENTIATION 

In studying force fields, it is necessary to consider phenomena in curvi- 
linear coordinates and develop four-dimensional geometry in arbitray curvi- 
linear coordinates. 

Consider the transformation from one curvilinear coordinate system, xo, 
XI, x2, x3, to another, xfo, XIi, xf2, X ' ~ :  
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xi = f' (Xf0 ,  xtl, xt2, x 3 ,  ( Tar- 1) 

where the fz are certain functions (endowed with all the mathematical properties 
of existence, continuity, differentiability, etc. ) . The coordinate differentials 
transform according to 

A summation convention is used such that when the same latin index appears as 
both a superscript and a subscript a summation is made from zero to three. 
Every set of four quantities, A , which under a transformation of coordinates 
transform like coordinate differentials is called a contravariant four-vector , 
i .e. ,  

1 

i axi tk A = - A .  
axfk 

( v-3) 

Contravariant vectors a re  designated by a superscript. 

Let q be some function of the space and time coordinates. Under a co- 
acp 
ax1 

ordinate transformation the four quantities - transform according to the 

formula 

Define A. = - a q  , . Atk = - a Every set of four quantities A. which, 
1 %i axik ' 1 

under a coordinate transformation, transform like the derivatives of a scalar, 
is called a covariant four-vector. Thus, under a coordinate transformation, 

and the components of a covariant vector are designated by a subscript. 
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In curvilinear coordinates two types of vectors and three types of tensors 

of the second rank occur. A contravariant tensor of rank two, Aik, is a set of 
sixteen quantities that transform like the products of the components of two 
contravariant vectors , i. e. , 

Similarly, a covariant tensor transforms according to the formula 

and a mixed tensor transforms like 

t V-7b 

Tensors of higher rank transform in a completely analogous fashion. For ex- 
ample, 

A tensor that is symmetric o r  antisymmetric in any pair of indices (both of which 
are covariant, o r  contravariant) remains so for any coordinate system. For a 
mixed tensor, the concept of symmetry o r  antisymmetry has no meaning, since 
to the different indices there correspond different laws of transformation, so 
that when we transform from one coordinate system to another, the symmetry 
changes. If a tensor is zero (every component) in one coordinate system, then 
it is zero in every other system. The sum of two tensors of the same co- o r  
contravariant character is a tensor of the same character. The product of com- 
ponents of the vectors A. and B is a tensor of the form A and of the vectors 

A. and B is a tensor of the form Ai . The product of the vector A i  and the 

1 k ik' 
k k 

1 

2 1  



ik ik tensor A is a tensor of the form AI , etc. 

The formation of the scalar product from two vectors is a special case 
--I-- 
--k--’ then of the following law of contraction of tensors: if one has a tensor A 

the expression A-i- is a tensor lower in rank by two than the tensor A * 

--I -- 
-&--a -i - 

i 
For example from the tensor A: one can form the scalar Ai : 

(V-IO) 

A! is actually an invariant. Similarly, the expression Aik (A: Bk)are sca- 

lars, etc. The expression qIi is a covariant tensor, of the second rank; 

(A: €3”) is a contravariant vector, etc. Quantities having two or  more super- 

scripts o r  subscripts identified by the same index are  not defined or  used here. 

1 ik ’ 

In curvilinear coordinates the unit tensor is defined as 

& = 0 f o r i  f k ;  6t, = l f o r i = k .  (V- l i )  

The unit mixed tensor has, as one of its properties, the reproduction of a vec- 

tor A when A is multiplied by % : k k i 

i k  i 
6kA = A .  ( v- 12) 

i 
6 was introduced briefly in the previous section when the square of the line k 
element, ds2, was shown to be of quadratic form in the differentials hi: 

ds2 = gik dx i k  dx . (V-13) 

The g. were indicated to be functions of the coordinates with symmetry prop- 

erties such that 
ik 
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i k  
Since the contracted product of g with the contravariant tensor dx dx is a 

scalar, g is a covariant tensor; it is called the metric tensor. Two tensors 

are said to be reciprocal to each other i f  

ik 

ik 
, 

kQ Q 
A. B = 6. . ik 1 

(V-15) 

ik 
In particular, the contravariant metric tensor is the tensor g 
tensor g that is, ik' 

reciprocal to the 

kQ Q 
gik g = 6. . 

1 
(V-16) 

In a Cartesian system of coordinates (four-dimensional) void of force producing 
phenomena, the g components are defined as ik 

where 6 

Using equations (V-16) and (V-17) , is is easily seen that 

= 1 f o r i  = k;6 
ik ik = 0 for i # k. 

ik &k 
g =  (V-18) 

in a Cartesian system of coordinates, where 6ik is defined similarly to 6 

the gik determine the physical properties of space, we are  led to the conclusion 

that in a Cartesian system of reference there is no difference between a covar- 
iant and contravariant vector representing a physical quantity. In the physical 
space concerned here, it should be clear that the only quantities that can de- 
termine the relation between co- and contravariant components are  the compon- 
ents of the metric tensor. Therefore, 

Since ik' 

i ik 
A = g  A k' (V-19) 

and inversely 
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k 
A . = g  A . 

1 ik 
(V-20) 

i It is evident, then, that in a Cartesian system of reference A. = A . However, 

in curvilinear coordinates the relationships in equations (V-19) and (V-20) are  
required to change from a contravariant to a covariant representation of phys- 
ical quantities represented by vectors. However, it should be noted that in a 
Galilean system, unlike a Cartesian system, there is no complete identity be- 
tween the eo- and contravariant forms of vectors; they differ at most by a sign 
(see previous section) . 

1 

All that has been said above in changing from eo- to contravariant forms, 
and vice versa, applies also to tensors. Every tensor in a Cartesian system can, 
on transformation to curvilinear coordinates, be presented in several forms , 
with different eo - and contravariant character. The transformation between the 
different forms of the tensor is accomplished in a manner similar to that for 
vectors. Thus 

etc . im ik iQ km 
ALQ = gQmAk ; A = g g A Q m Y  

(V-2 I) 

Mote that i f  a tensor of the second rank is not symmetric, then we must distin- 
i k guish between A and A. , i. e. , the position from which the index was raised. k 1 

In a Cartesian system of coordinates, the square of the absolute value of a vec- 
tor is equal to the sum of the squares of its components. In curvilinear coordi- 
nates, the square of the absolute value of a vector is the scalar 

ik A . A ~  = g. = g . 
1 ik 

(V-22) 

Indices over which summation occurs in a product of tensors ("dummy" indices) 
have a certain freedom of movement . Thus, for example, 

ik ik Qk k Q  
A Bik = AikB ; AikB = Ai Bk,  etc. (V-23) 

An index can be raised in one of the factors provided the same index is lowered in 
the other. 

The volume in four-dimensional space in Cartesian coordinates is defined 
as 
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dQ = dxo dxi dx2 dx3 . (V-24) 

When transforming to curvilinear coordinates, g is defined as the determinant of 
the tensor array g and it is found that the volume element is ik 

(V-25) 

where the prime symbolizes the curvilinear system of coordinates. Thus, in cur- 

vilinear coordinates, when integrating over any region of four-space, .$-g d a  
behaves like an invariant. 

If ‘p is a scalar, then the quantity F g  ‘p, (which, upon integration over 

do, gives an invariant), is sometimes called a scalar density. Similarly, one 

speaks of vector and tensor densities c g A i ,  C g A i k ,  etc. These quantities 

give vectors or  tensors when multiplied by the four-volume element dQ. The 
integral 

(V-26) 

over a finite region, generally speaking, cannot be a vector, since, a s  we shall 
i see shortly, the laws of transformation of the vector A are different for differ- 

ent points. 

In general, a hypersurface is a three-dimensional manifold (three-dimen- 
sional volume). Analogous to the theorems of Gauss and Stokes for three-dimen- 
sional integrals, there a re  theorems which enable us to transform four-dimen- 
sional integrals. An integral over a closed hypersurface can be converted into 
an integral over the four-volume enclosed by it by defining the element of integ- 

ration, dS , by the operator 
i 

i a 
a x  

dS = dQ - 
i ’  

(V-27) 

For example, for the integral of the vector A 
i’ 

(V-28) 
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which is a generalization of Gauss' theorem. 

An integral over an ordinary surface is transformed into an integral over 
the hypersurface "spanning" it by defining the element of integration by the op- 
erator 

(V-29) 

ik' For example, for the integral of the antisymmetric tensor A 

i3A 

ax ax (V-30) 

I jki '2; - d S  k -.) aAik = J - d S .  ik  i 
i f A i k d f l k  =y k 2 

sional 
The rule for transformation of an integral over a closed four-dimen- 

curve into an integral over a surface spanning it is included for com- 
pleteness; it consists of defining 

-k a 
ax 

dxi = dfl -k . ( V-3 I) 

For example, for the integral of a vector, 

aAi aAi 
$A.dxi = J d P T  - - - J d j k ( 2 -  -) k '  (V-32) 

ax ax 1 2 ax 

which is a generalization of Stokes' theorem. 

1 In Cartesian coordinates A dA and the - are tensor components. 
i' i' k ax 

1 In curvilinear coordinates dA. is not a vector and - is not a tensor. This is 
1 k ax 

due to the fact that dAi is the difference of vectors located at different (infin- 

itesimally separated) points in space. Vectors transform differently at different 
points in space, since the coefficients in the transformation formulas are func- 
tions of the coordinates. The transformation formula for a covariant vector is 
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A. = - 
1 i ax 

(v-33)  

therefore, 

ax 'k 1 + a d ( % ) ,  'k 
dA. = - 

ax 1 i dAk 
ax 

( v-34) 

(V-35) 

The same also applies to the differential of a contravariant vector. Only if the 
'k 

= 0, do the dA. transform like 'k k a2x 
-77 1 ax ax 

x 

a vector. 

are linear functions of the x , i. e.,  

The definition of a tensor in curvilinear coordinates which plays the 
aAi 

same role as - in Cartesian coordinates will now be constructed. In other k ax 
aAi 

axk 
words - must be transformed from Cartesian to curvilinear coordinates 

In curvilinear coordinates two vectors are required to be located at the 
same point in space so that they can be added o r  subtracted from one another. 
In other words, one of the vectors must somehow be "translated" to the point 
where the second is located, after which is determined the sum or  difference of 
two vectors which now refer to the same point in space. The operation of trans- 
lation itself must be defined so that in Cartesian coordinates the sum o r  dif- 
ference shall coincide with the ordinary differential dA.. And dA. is just the sum 

or  difference of the components of two infinitesimally separated vectors; this 
means that when Cartesian coordinates are used the components of the vector 
should not change as a result of the translation operation. But such a trans- 
lation is precisely the translation of a vector parallel to itself. Under a paral- 
lel translation of a vector, its components in Cartesian coordinates do not 
change. If, on the other hand, we use curvilinear coordinates, then, in gen- 
eral, the components of the vector will change under such a translation. There- 
fore, in curvilinear coordinates, the sum o r  difference in the components of the 

1 1 
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two vectors after translating one of them to the point where the other is located 
will not coincide with their sum or difference before the translation (i.e. , with 
the differential dA,) . 

1 i Consider an arbitrary contravariant vector: If its value at the point x 
i i i i i 

is A , then at the neighboring point x + dx  , it is equal to A + dA . If the vec- 
i i i tor A is subjected to an infinitesimal parallel displacement to the point x + dx  ; 

the change in the resulting vector is denoted by 6A . Then the difference DAi 
between the two vectors now located at the same point is 

i 

(V-36) DA i =ai- ai. 

i The change 6A in the components of a vector under an infinitesimal parallel 
displacement depends on the values of the components themselves, where the 
dependence must clearly be linear. This follows directly from the fact that the 
sum or difference of two vectors must transform according to the same law as 

i each of the constituents. Thus a has the same form 

(V-37) 
c 

where the CQ are certain functions of the coordinates. Their form depends, 

of course, on the coordinate system; for a Cartesian system, tQ = o s  

Clearly the fQ are not tensors, for a tensor equal to zero in one co- 

ordinate system is equal to zero in every other coordinate system. It is gen- 

erally impossible to make the 

However, it is possible to choose acoordinate system in an infinitesimal region of 

non-Euclidean space for which the tl become zero. The quantities I? are  

called the Christoffel symbols. One defines 

vanish everywhere in non-Euclidean space. tl 
kQ 

rm 9 
- - 

gim kl  
r 
i, kQ 

(V-38) 

and, of course, conversely 
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im 
m,k-f .  

I? = g  Id- 
(V-39) 

The relationship governing the change in a covariant vector under a par- 
i allel displacement will now be found. Let A. and B be any co- and contra- 

variant vectors. Their product, A.B , is a scalar, and, under a parallel dis- 

placement, a scalar is unchanged. Hence, 

1 i 
1 

i 
6 (AiB ) = 0, 

k l  Bi 6A. = -A.  6Bi = I? kJ A i B dx . 
1 1 

We are permitted to change indices: 

B ~ @ ~  = I+ AkB i l  d x .  
i-f 

i The B are arbitrary, so 

a. 1 =$%.;'. 

(V-41) 

(V-42) 

(V-43) 

This determines the change in a covariant vector under a parallel displacement. 
Note that 

( v -44) i 8Ai &l. dA =B 
ax 

Upon substitution of equations (V-37) and (V-44) into equation (V-36),  one 
obtains 

DA i = ($ + Ikip Ak)dXl , 

and, similarly, for a covariant vector 

(V-45) 



The expressions in parentheses in equations (V-45) and (V-46) a re  tensors, 

which, when multiplied by the vector dx  give a vector. These a re  the tensors 
which in curvilinear coordinates play the same role as the tensor aA i k  / ax in 

Cartesian coordinates. These tensors a re  called the covariant derivatives of 

the vectors A and A i '  Thus 

Q 

i 
respectively. We shall denote them by Ai;Q and Ai;Q . 

where 

i aAi + fQ Ak 
B A ;L = 

ax 

(V-47) 

(V-48) 

Note the reduction to Cartesian coordinates when fQ = $ 0 .  

Let us now calculate the covariant derivative of a tensor under an in- 
finitesimal parallel displacement. Consider a contravariant tensor expressed 

as a product of two contravariant vectors A B . Under a parallel displacement 
i k  

= A i m k + B k U i  = - A i  I? B Q d x m - B k 3  A Q &". 
Qm Qm 

(V-50) 

By virtue of the linearity of this transformation there must also be, for an 
ik 

arbitrary tensor A , 

SA ik = -  ( A im,+  + A m k s  ) & Q  
ml  mQ 

Substituting equation ( V-5 i) into 

( v-5 I) 

ik ik ik ik Q DA = d A  - 6A -A ; Q d x ,  
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obtains the covariant derivative of the tensor Aik in the form 

ik aAik + $ Amk + fi Aim 
1 mQ mQ ax 

A ;Q = (V-53) 

i 
k In similar fashion, one obtains the covariant derivative of the mixed tensor A 

and the covariant tensor Aik in the form 

a< 

ax 
i - - rm +I? 

Ak;Q - 7 kQ m ml , 
(V-54) 

(V-55) 

One can similarly determine the covariant derivative of a tensor of arbitrary 
rank. In doing so one finds the following rule of covariant differentiation: to 

obtain the covariant derivative of the tensor A: : 
covariant index i(A: : : , one adds to the ordinary derivative aA: : : /ax a 

term - $ A: : , and for each contravariant index i (A: .  . ) a term 

Q 
with respect to ax for each 

Q 

i .  

One can easily verify that the covariant derivative of a product is found 
by the same rule as for ordinary differentiation of products. Consider the 
covariant derivative of a scalar p as an ordinary derivative, that is, as the 

covariant vector 9 = -- a' in accordance with the fact that for a scalar k axk ' 

650 = 0, 
is 

If, in a 

and therefore D q  = dp. The covariant derivative of the product A B i k  

(V-56) 

covariant derivative, one raises the index signifying the differentiation 
one obtains the so -called contravariant derivative. Thus, 

(V-57) 
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The Christoffel symbols a re  symmetric in the subscripts. Since 

i;k i;k k;i the covariant derivative of a vector A 

is also a tensor. Let the vector A. be the gradient of a scalar, that is, 

is a tensor, the difference A - A 

1 

, with the help of equation k a2<p - aAk A. = - a<p . Since aA./ax = - - - 
i ax 1 i 1 ax ax ax 

(V-49) Y 

i;k ax %; i ( V-5 8) 

In Cartesian coordinates the left side equation (V-58) is zero. Since the left 
side is a tensor, it must be aero in all coordinate systems. Therefore, 

tQ = r' Qk 

In a similar fashion it can be shown that 

r = r  
i, kQ i,Qk . 

(V-59) 

(V-60) 

So, in general, there a re  forty different quantities o r  ka i,Qk . 
In speaking of the Christoffel symbols mention should be made of the 

formulas for transforming the Christoffel symbols from one coordinate system 
to another. Compare the laws of transformation of the two sides of the equations 
defining the covariant derivatives, and require that these laws be the same 
for both sides. The result is 

i a 4  ax (V-61) ax + 
i 'n ' P  

r' = r 'm  ax 
kQ n p  ax 'm ax k ax ax ax ax 

- -  
k l -  'm e Q 

It is clear that the r' behaves like a tensor only under linear transformations 

(meaning the second term in equation (V-6 I) is zero) . Equation (V-6 I) shows 
kl 

that it is possible for a coordinate system in which all the become zero at 
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a preassigned point (locally inertial, locally geodesic) . 
Let a given point be chosen as the origin of coordinates, and let the 

l values of the I? 

(ti) . In the neighborhood of this point, the transformation is made: 

at that point be initially (in the coordinate x 1 equal to k l  

x 'i = x  i + ;(I&) 
x x .  

0 

Then, 

(V-62) 

(V-63) 

and according to equation (V-61) , all of the r'" become equal to  zero. Note 

also for the transformation in equation (V-62), 
nP 

(S) = { ,  (V-64) 

so that it does not change the value of any tensor, including the tensor g at ik' 
the given point. Hence, the Christoffel symbols vanish at the same time that 
the gik is brought to Galilean form. 

The relation of the Christoffel symbols to the metric tensor will now be 
calculated. First, it will be shown that the covariant derivative of the metric 
tensor g is zero. Note that ik 

DA. 1 = gikDAk (V-65) 

is valid for the vector DA 

A. = g. A . Therefore, 

as for any other vector. On the other hand, 
i' k 

1 ik 

DA. 1 = D(gikAk) = gikDAk + A$gik . (V-66) 
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k 
Since A is arbitrary, then 

Dgik= 0 ;  (V-67) 

therefore, the covariant derivative 

= 0 ,  gik;l 
( V-68) 

and gik may be considered constant during covariant differentiation. Equation 

(V-68) can be used to express the Christoffel symbols I? 

metric tensor g. 

sor one writes for equation (V-68) : 

in terms of the ka 
Using equation (V-55) for the covariant derivative of a ten- ik' 

rm - gim rm kl 9 

- agik 
gik;l - 7 ax - gmk il 

(V-69) 

Thus, the derivktives of g 

One writes the values of the derivatives of g 

are expressed in terms of the Christoffel symbols. ik 
permuting the indices i, k, Q: ik' 

agik 
i- ri,kl , = r  

k, i n  ax 

- r  agkQ - -  = - r  
i Q,ki  k , l i  . ax 

(V-70) 

( v-7 i) 

(V-72) 

= I' and takes one half the sum of equations (V-70), 
i , lk If one recalls that I'. 

(V-711, and (V-72) one gets 
1, kQ 
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ax 2 ax 
r 
i, kQ 

im one gets from equation (V-73) Recalling that fQ = g 
m, kQ, 

(V-73) 

( v-74) 

Equations (V-73) and (V-74) are  the required expressions for the Christoffel 
sy’mbols in terms of the metric tensor. 

An expression for the contracted Christoffel symbol r” , which will be ki 
important later on, will now be derived. The differential, dg, of the 
determinant, g,  made up from the components of the tensor g 

dg can be obtained by taking the differential of each component of the tensor 
and multiplying it by its coefficient in the determinant, i. e. , by the gik 

corresponding minor. The components of the tensor g reciprocal to g are 

equal to the minors of the determinant of the g 

Hence, the minors of the determinant g are equal to the minors of the 
determinant of the g 

determinant g are  equal to ggik. Thus, 

is calculated; ik 

ik 
ik 

divided by the determinant. ik ’ 

divided by the determinant, and the minors of the ik’ 

ik i ik  ik 
since g g = 6. = 4, g d = - gikdg . ik 1 gik 

From equation (V-74) one has 

(V-75) 

(V-76) 

If the positions of the indices m and i a re  changed in the third and first terms in 
parentheses, the two terms cancel each other so that 
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k '  
ax 

and by equation (V-75) one writes 

(V-77) 

(V-78) 

Note also the expression for the quantity g".e iQ 
(V-79) gkQ tQ = i g kQ im + - - - ) ,  agQ m agkQ 

axm k 
ax 

One may write equation (V-80) as 
I 

i im kQ aglcQ 
m 2 ax ax kQ 

One uses equation (V-75) to write equation (V-81) as 

kQ im agmk i gim ag k Q r i  = g  g - _ _ -  - *  
m g ax 

Q 
ax kQ 

Recall that 

m 
Differentiation with respect to x yields 

Qk agiQ 
= - g  . .  a t k  

ax axm 
giQ 

(V-80) 

( v-8 i) 

(V-82) 

(V-83) 

(V-84) 
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Interchange m and Q and change sign: 

Then interchange k and i: 

Substitute equation (V-87) into equation V-85 to obtain 

In view of equations (V-83) and (V-88) one has 

Since m is a dummy index, it may be replaced by k: 

which may be written a s  

(V-85) 

(V-86) 

(V-87) 

(V-88) 

(V-89) 

( v-90) 

T-9 

Finally, it need only be pointed out that similar calculations for the contra- 

variant metric tensor, ik, yields 
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ik g ;J = 0 ,  (V-92) 

from which it follows 

(V-93) 

Now, recalling equation (V-48) and equation ( V-78) , one can compute the ex- 
i pression for A ;i, the generalized divergence of a vector in curvilinear coordi- 

nates in the convenient form 

' Q aAi Q aQn"J-g aAi + fl. A = - +A--7- ' (V-94) 
i A ; i  = - 

i ax ax 1 Q l  ax 

which may be written as 

a ( G  Ai) 
i ax 

(V-95) 

One can derive an analogous expression for the divergence of an anti- 
ik 

symmetric tensor A . Recall equation (V-53) : 

Aik;k = - aAik + r' Amk + rk Aim . 
k mk mk ax 

mk km But, since A = -A , then 

So, using equation (V-78) again one obtains 

(V-96) 

(V-97) 

(V-98) 
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for the divergence of an antisymmetric tensor. 
ik 

Now suppose A is a symmetric tensor; one calculates the expression 

Ak for its mixed components. Recalling equation (V-54) we have 
i;k 

a 8Ai k Q k # I  ( ' ) - i A f .  

= - + + A - g A Q = -  ax k i;k k Qk i ik 
(V-99) rJ-g ax 

The last term here is equal to 

- -(- i agiQ + - agkQ - - )AkQ.  agik 
i ax ax k ax 

( v-100) 

kQ 
Because of the symmetry of A 
other leaving 

two of the terms in parentheses cancel each 

a(GA!$ agkQ kQ (V-io I) 
- - - A .  I 

Ak k i;k 
- - -  

1 
ax rJ-g ax 

is an antisymmetric tensor. In cur- In Cartesian coordinates, - - - 

vilinear coordinates the tensor is A. - A With the help of equation (V-49) 

aAi a% 
ax ax i 

i;k k;i' 

for Ai;k7 and since tQ = I& one has 

(V-102) 

Finally, we transform to curvilinear coordinates the sum - "' of the 
a 2 2  

second derivative of a scalar p . In curvilinear coordinates this sum goes over 
;i 

But 9.. = - " since covariant differentiation of a scalar reduces to 
i ax 9 1  

to %i - 
ordinary differentiation. Raising the index i one obtains 

p; i ik ap 

ax 
= g  - k 7  (V-103) 
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and then by equation (V-95) one writes 

;i - 1 a ik 
%i - 
- - 

axi ax 
(V-104) 

One can also use equation (V-95) to write Gauss' theorem for the transforma- 
tion of the integral of a vector over a hypersurface into an integral over a 
four -volume: 

$ A i  .$-g dSi = s A i ; i  0 d a  . (V-105) 

VI, THE RIEMANN CURVATURE TENSOR, ITS PROPERTIES, 
AND THE EMPTY SPACE GRAVITATIONAL FIELD EQUATIONS 

In the following development of the Riemann curvature tensor and the 
empty space gravitational field equations, the authors briefly recall some of the 
pertinent facts that were developed in the previous section. This is done not a s  
a matter of redundancy but to help elucidate the following material. 

i i  The authors evaluate the variation of a contravariant vector field A (x  ) 

in coordinate values x to x + dx in affined space. Comparison of the value 

Ai (xi + dxi) with the value of the vector Ai '"(xi + dx ) obtained from A ( x  ) by 
vector transplantation from x to x + dx will be made. At the point 

(x + dx ) the vector difference Ai(xi + dxi) - Ai"' (xi + dxi) has the value 

i i  i 

i i i  
i i  i 

i i 

Ai (xi+dxi) -Ai(xi) -[A i :: (xi+dxi) -Ai  (xi)] 

L J 
' L k  - -  - 'A' dxk + 0 (dxk)' + CL A dx  

k ax 

= (.?$- + $LAL) dx k + O ( d x )  k 2  . 
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By analogy, to the first -order term in a Taylor's expansion the quantity 

Ai = - aAi + fQ A' k 
ax ;k 

is interpreted as a "derivative, If and is by definition the covariant derivative of 
the contravariant vector field. It is directly demonstrated from the tensor 

i transformation laws that A is a tensor, and to contrast the covariant dif- 
;k 

ferentiation with ordinary differentiation it is written 

= Ai + fQ A' . 
;k 7k 

Ai (VI-3) 

If equation (VI-3) is specialized to a Riemann space, the Christoffel symbols * 
I? kQ are replaced by the symbols {;Q} 

For a covariant vector field B the covariant derivative is defined by m 

B m;Q = B  m7Q - {:Q} Br * 
(VI--5) 

i j  is defined by k; Q 
the covariant derivative T k For a tensor field 

= ~~j + { Tmjk -F {LQ) Timk - (kmQ] Ti' m . (VI-6) 
k;Q k7Q 

The generalization to a tensor of any order can be inferred from equation (VI-6) . 

The product formula for differentiation is valid for covariant differentia- 
tion: 

* 
1 Instead of CQ and I?. , the symbols { kiQ} and [i, kQ ] are sometimes 

1, kQ 
used. The interchange is well known and c& be used without ambiguity ac- 
cording to personal choice. 
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The Einstein gravitational field equations are based on the Riemann 
curvature tensor. For this reason more space will be given to the development 
of the Riemann curvature tensor. 

First it will be recalled that the Lorentz metric has the property that in 
the coordinates of special relativity its components are constant over all of space: 

1 0 0  

g.. 1J = (1 -; ; i ) .  
0 0 0 - 1  

This is equivalent to the statement that a system of geodesic coordinates exists 
in the large. - All Christoffel symbols a re  zero in this system, i. e . ,  for any 
vector 

Hence, 

and 

i - A  = 0 .  
;k;j ;j;k 

Ai 

( V I - I O )  

(VI-11) 

This is a tensor equation, i. e. ,  since it is true in one system of coordinates, it 
is true in all systems, not just in the geodesic system. Thus when a space ad- 
mits a Lorentz metric, equation (VI- i i )  holds. Define a tensor 

(VI-12) 

Then 

Ti = Ai = Ti + (:Q} TT - { j n Q }  Ti n .  (VI-13) 
3;Q ;j;Q j ,Q 
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The substitution. of equation (VI-12) into equation (VI - I3)  yields 

( VI -14) 

If j and I are interchanged, then 

+ { i ,  Am,R f { i }  {Imk] Ak-{l"j) Ti n .  ( VI-15) 
m j  m j  

Then 

+ { m l  i }  { j k } A k -  { ~ j ) { R m k }  Ak ' 

The object within the brackets is a tensor, 
as the Riemann curvature tensor and plays 
- ture of Riemann space. I t  is denoted by 

(VI-16) 

Ak . 

by the quotient theorem. It is known 
a central role in the geometric struc- 

The necessary condition that a Riemann space admits a Lorentz metric can be 
written 

(VI-18) 

43 



j Since A is an arbitrary vector, the necessary condition that a Riemann space 
admits a Lorentz metric may be written 

= 0 .  Ri j k.4 
(VI-19) 

A space is said to be - flat if its Riemann curvature tensor vanishes. Equation 
(VI-19) states that if a space has a Lorentz metric, then it is a __I flat space. The 
converse statement that a physically acceptable space has a Lorentz metric if 
it is flat can be proved. Hence, a necessary and sufficient condition that a space 
has a Lorentz metric is given by equation (VI-19) . 

The generalization 
straight-forward process. 

i j  
- T  ;k;B ;l ;k 

If the index i in equation 

of equation (VI-18) to tensors of higher rank is a 
For example, for a second rank tensor, 

(VI-18) is lowered, the result is 

- - A m .  RimkB - A  i;k;Q i;Q;k A 

(VI-20) 

( VI-2 1) 

This formula is useful in covariant differentiation of covariant vectors. This 
formula requires commitment to a metric space. If the same calculations for 
the interchange of derivations of covariant vectors are made as for contravariant 
vectors, the result is 

1 - 
Ai;j;k - Ai;k;j - ijk 'Q . (VI-22) 

This formula does not require a commitment to a metric space and is valid 
in the general affine case. 

The Riemann curvature tensor has 4* = 256 components. The number 
of independent components is much smaller because of symmetry relations. An  
inspection of equation (VI-17) shows that the Riemann curvature tensor is anti- 
symmetric in the third and fourth indices k and Q . Hence, the kQ sub-block 
has only six, instead of 16, independent components. In combination with the 16 
components of the i j block, this reduces the number of independent component 
to a maximum of 96. 

i The Riemann curvature tensor R is a mixed tensor which, for con- 

venience in stating its symmetry properties, will be changed into the covariant 
jkQ 
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form by lowering the index i : 

- - Rm RijkQ gim jkQ . (VI-23) 

Then the symmetry properties 

- 
R.. ij kQ - - RijQk 

RijkQ = - RjiQk 

- 
RijkQ - - RQkij 

are stated without proof. 

RijkQ + RkjQi  -I- 

RjikQ + %iQj + 

Y 

(VI-24) 
9 

Also, 

= o ,  
RQ jik 

= o .  RQijk 
(VI-25) 

Between the components R0123 , R0231 , R0312 , there exists the 
relation 

Ri023 + R2031 + R3012 = 

The relation 

(VI-26) 

( VI-27) Ri -I- Rjmk;Q i -I- RjQm;k i = o  
jkl;m 

is valid for the Riemann curvature tensor. It is known as the Bianchi Identity. 

By the definition of the parallel displacement of a vector the change in 
i the component A under parallel displacement is given by 

Ajdxk  . i = - (jt) 
(VI-28) 

i If a curve Si, between two points PI and P, is given and the value of A is giv- 
i en at Pi, then the value of A at P, can be computed by using equation (VI-28) : 
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$, = s dAi 

s 12 
(VI-29) 

i 
where 6, is the change in A along the curve SI, . If a different curve 
Si, is used to connect PI and P, then, in general, 

(VI-30) 
i 

i. e., the change in A is path dependent. If S is a closed curve starting 
and terminating at Pi, then 

$(S) = J dAi 
S 

(VI-3 i) 

is not necessarily zero. 

i 
A parallel displacement of A from the point P. to the point P along the 1 f 

i 
path P. Pipf will be compared with the parallel displacement of A 

path PiP2Pf, according to Figure 6 : 

along the 

i These displacements and values of A 
are described by the following equations: 

1 

I 

{;k}pl={;k} + {;k},m k m Y  

(VI-34) 
FIGURE 6. PARALLEL DIS - pi 

PLACEMENT PATHS 

Ak - { m n  }Andxm I d d  . 
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By a rearrangement of terms, equation (VI-35) may be written in the form 

a i ( p I p f )  = -{jik}A k dx -j - { i }  A k n  dx &j 

j k , n  

+ { jik} { mkn} An dxm b;zj . (VI-36) 

Hence, 

By interchanging dx and &, 

The difference between the parallel displacements along the infinitesimal 

paths P.PIP and P.P P is 1 f  1 2 f  

A k dx -j dxm -{;k},mA k dx -j dxm 
= {Lk/  

By the definition of the Riemann curvature tensor, this is exactly 

( VI -40) 
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Thus the value of Ai 

if R kmj = 0 , and for a non-zero Riemann curvature tensor the difference 

in final values is given by equation ( VI-40) . 

at the nearby point is independent of the path i f  and only 
i 

i The meaning of the above discussion is that a vector field A (x) can be 

established by parallel displacement of an arbitrary vector A from some ini- 
tial point P to all points in the neighborhood of P in a Riemannian space if and 
only if the Riemann curvature tensor of the space is identically zero. That is, 
the system of differential equations 

i 

Ai , j  = - (:j) Ak (VI-41) 

is integrable if and only if the Riemann curvature tensor is identically 0, i. e. , 
the space is flat. 

These Einstein field equations will now be introduced by an heuristic 
argument. It has been pointed out in preceding paragraphs that a gravity-free 
space with a Lorentz metric is correctly described by the equation 

= 0 .  Ri j k-4 
( VI-42) 

The complete field equations might be expected to be some generalization of 
equation (VI-42) , i. e. , a weakening of equation (VI-42). This weakening is 
suggested by a consideration of Laplace's equation for the classical gravi- 
tational potential: 

i T =  a2 40 i q,i,i  = 0 .  
i=i ax i= 1 

(VI -43) 

If Newton's second law of motion and the geodesic equation of motion are to 
yield approximately the same trajectories for slowly moving particles in a weak 
gravitational field, the goo component of the metric tensor must be approximately 
given by 

48 

( VI -44) 



Hence, 

(VI-45) 

and Laplace's equation becomes 

3 

C goo,i,i = 0 . 
i= 1 

(VI-46) 

This equation must be an approximate form of the relativistic field equations 
and involves second derivatives of the metric tensor with a summation over 
the repeated index i. In a covariant tensor equation, the analogue of such a 
summation is a contraction. This suggests a contraction of the Riemann tensor. 
A contraction between i and j o r  between k and Q yields a null tensor since 

is antisymmetric in these pairs. Contraction between i and k, between Ri j kQ 
i and Q ,  and between j and k differ only in sign. Hence, the only meaning- 
kl contraction on R.. = 0 is 

ij kQ 

(VI-47) 

where R 

Einstein adopted to describe the gravitational field in free space. 

is the contracted Riemann curvature tensor. This is the equation 
jQ 

The contracted Riemann curvature tensor is symmetric: 

(VI-48) 

Hence, the contracted Riemann curvature tensor has 10 independent components. 

In their expanded form, the free-space gravitational equations a re  

i 
If the Riemann curvature tensor RSklm is contracted, a tensor of rank 

2 is obtained satisfying the conditions: 
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= Rm = Rm m = -R m = - R  . ikm i.mk mk. i .kmi . (VI-50) 
Rik = Rm . imk 

These will be consequences of the symmetry relation in equation ( VI-24) and 
equation (VI-23) . The symmetry relation in equation (VI-47) will be seen re- 
peated in equation ( VI-50) . 

By a further contraction the curvature scalar R is obtained: 

i ik R = R. = g Rik 
1 

(VI-51) 

If the Bianchi identity in equation ( VI-27) is contracted relative to the 
indices i and k , the following equations are obtained: 

i - R  = 0 ,  R. JJ ;m + R.jlm;i  jm;J 

o r  

Further contraction relative to j and J yields the result 

= o ,  k R - 2 R  ;m m;k 

o r  

I i j  

i. e. , the covariant divergence of the tensor 

( VI -52) 

(VI-53) 

( VI -54) 

( VI -55) 

is zero. Because of the symmetry properties this tensor has only ten independ- 
ent components. 

If R = 0, then 

( VI -56) 
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This is the Ricci tensor. Hence if the Riemann curvature tensor satisfies the 

free-space equations Rij = 0 , then the - Ricci tensor is zero. Conversely, 

if G '~  = o , then 
.. 

The contraction of this equation yields 

l i  = R - -  6.R = R - 2 R  = 0 .  
Gi 2 1  

Thus , 

(VI-57) 

(VI-58) 

(VI-59) 

i i 
3 3 

Therefore, G. is zero if and only if R. = 0 . Hence, the Einstein field equa- 

tion for free space may be written in terms of the zero-divergence Ricci tensor: 

i i l i  
G . = R  - -  6.R = 0 .  

3 j 2 3  
(VI-60) 

This form of the field equations for free space is extremely useful in dis- 
cussing conservation laws in relativistic physics. 

V I  I. THE CONSEQUENTIAL SPACE-TIME METRICS FROM 
THE GRAVITATIONAL FIELD EQUATIONS 

The motion of a particle or  a wave in a force field characterized by a 
space-time metric manifests itself in a change in the expression for ds and the 

gik 
geodesic line in four-space xo, xi, 9, x3. The geodesic equation of motion is 

i in terms of the dx . Particles o r  waves move along an extrema1 o r  a 

- +  d2 xi 
I! kQ (.)($) = 0 ,  ds2 

(VII-I) 
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where by (V-74) 

im 
and the g 
culated from the relationship 

(so-called contravariant components of the metric tensor) a re  cal- 

(VII-3) i 
n 6 = l f o r i  = O .  

The motion of a particle in a force field is determined by the quantities 

The derivative ( d2 xi / ds2) is the four-acceleration of the particle. If m is the 
k l 

particle mass, the quantity may then be called - m (dx /ds) (dx /ds) , the 

"four-force" acting on the particle in the force field. Here  the tensor g plays 

the role of the "potential" of the fo'rce field; its derivatives determine the field 

. $1 

ik 

"intensity" r' kl ' 

Equation (VIT-I) is not applicable to the propagation of an electromag- 
netic signal, since along. the world line of the propagation of an electromagnetic 
signal the interval ds is zero, so that all the terms in equation (VU-I) become 
infinite. However, from thetheory of geodesics, there can be introduced a four- 
dimensional wave vector in the form 

i dxi k = -  ( VI1 -4) 
dh 

where h is a parameter that varies along the ray path. In a force field the 
geodesic equation for the path of an electromagnetic wave is 

dki k l  - + I& k k  = O .  
dh 

( VII-5) 

These equations also determine the parameter h . 
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To solve the geodesic equation of motion of a particle o r  an electromag- 
netic propagation, it is necessary to know the components of the metric tensor 
for the space-time under investigation and observation. Quite often one can 
derive the desired knowledge of the particular physical situation from compo- 
nents of the metric tensor without solving the geodesic equation of motion. 

- - .  

The systems of equations VI-47 and VI-60 connect the time derivatives 
of the components g., of the metric tensor with the components and their space 

derivatives. Mathematically, those equations lead to the problem: given the 
metric tensor g.. and all of its first derivatives at a given moment xo in the 

entire three-dimensional space of the remaining three variables x , to compute 
its value for all future time. This problem will be recognized as a typical 
Cauchy problem in partial differential equations. Without loss of generality, the 
three-dimensional space may be taken as a three-dimensional hypersurface S 
oriented in space and described by the equation xo = 0 .  The normal to this 
hypersurface is oriented in time so that goo > 0. The components of the metric 
tensor g.. and their first derivatives are  prescribed in S. It is to be noticed that 

the prescription of the g.. in S allows the computation of the first derivatives 

i. e. , all first derivatives not involving differentiation relative to the 
gij, k' 
time. Hence, it is sufficient to prescribe the following initial values on S: 

13 

CY 1J 

13 

13 

gij ' gij,k (VII-6) 

i .e . ,  metric potentials and their normal derivatives. For further discussion of 
the mathematical structure of the Einstein field equations for free space (VI-47 
and VI-60) the reader is referred to Adler, Bazin, and Schiffer, 1965 (Chap. 7, 
p. 210). 

The gravitational field equations VI-47 and VI-60 are  nonlinear and ex- 
tremely difficult to solve. However, in certain special cases, symmetry 
conditions greatly simplify the field equations. An extremely important case 
is the time-independent and spherically symmetric line element. Schwarz- 
schild (1915) solved the associated field equations in 1916 and found the empty 
space static solution for a mass to have the following expressions for the 
components of the metric tensor: 
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cL r 

( VI1 -9) 

where M is the mass of the spherically symmetric mass distribution and r is 
the magnitude of the position vector locating the point mass. 

Schwarzschild's solution is significant because it is the only solution of 
the field equations in empty space which is static, which has spherical symmetry, 
and which goes over into the flat metric at infinity. Therefore, if one considers 
a concentration of matter of finite dimensions which is spherically symmetric, 
one knows that the gravitational field outside the region'filled with matter must 
be Schwarzschild's field. 

For convenience, define 

and write equations (VII-7) , (VII-8) , and (VII-9) as 

goo = 1 + KY 

( v r r - I O )  

(VII-li) 

(vrr-12) 

( VI1 - 13) 

Lense and Thirring ( 1918) made a significant extension to the static 
solution of Schwarzschild. 
distribution is rotating uniformly. Then, associated with the central body 
are components of the angular momentum per unit mass which will be designated 
L 

ergy-momentum tensor for a uniformly rotating spherical mass distribution 

Now imagine that the centrally symmetric mass 

Lense. and Thirring found, by writing the appropriate values for the en- 
a P' 
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and making linear approximations, that the goa are not zero under these con- 
ditions but 

(VII-14) 

Equation ( VII-14) 
weak at all distances. Also, without further consideration, the solutions 
for the components of g ik 
radius, ro, of the centrally symmetric mass distribution. 

is valid when one considers the gravitational field to be 

can be considered to be valid only outside of the 

V I  I I. COMBINED EFFECTS OF UNIFORM ROTATION 
AND THE GRAVITATIONAL FIELD ON PROPER T IME 

Although, in general, gravitational fields cannot be superimposed upon 
one another, there is no reason why force fields cannot be superimposed as 
long as there is no physical evidence to suggest that they are  in some manner 
coupled together. 

One is motivated at this point to examine the combined effects of a uni- 
formly rotating coordinate system and a gravitational field, because of an in- 
tense interest in the scientific community to measure the theoretically predicted 
frequency difference between identical atomic oscillators - one placed at a 
point on the earth's surface near the equatorial plane and the other positioned in 
a synchronous orbit above the earth-based atomic oscillator. 

An  earth-based atomic oscillator is by definition at rest  in a coordinate 
system that rotates uniformly in the equatorial plane relative to a coordinate 
system originating at the center of mass of the earth and fixed in space relative 
to the so-called "fixed" stars. An atomic oscillator in synchronous earth orbit 
positioned above the earth-based oscillator will be characterized by an inclina- 
tion angle to the equatorial plane and an orbit eccentricity that in general will 
cause it to move in a figure eight relative to the earth-based atomic oscillator. 
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To compare the theoretical frequency dserence  of the two identical a- 
tomic oscillators described above, it is necessary to transmit electromagnetic 
signals between the two atomic oscillators. To a first approximation, one can 
use the Schwarzschild solution for free space superimposed upon a uniformly 
rotating coordinate system to calculate the proper time of the atomic oscillators 
in the uniformly rotating coordinate system. This, of course, considers the 
earth to be perfectly spherically symmetric and ignores the presence of other 
masses in our solar system. The perturbing effects of these bodies will be 
discussed later. Terms in the resulting metric of order greater than (K)3/2 
will be considered negligible. 

Consider a right-handed xyz coordinate system originating at the center 
of mass of the earth, the positive z axis passing through the North Pole and the 
xy plane coinciding with the equatorial plane of the earth. Let the x and y axes 
be orthogonal to one another, at rest relative to a fixed point on the equator, and 
therefore rotating uniformly relative to the fffixedf7 stars. The spin of the 
earth is by definition nonexistent in such a coordinate system, and, therefore 
there is no contribution to the go, components of the metric tensor from the 
spin of the earth. 

If one linearly superimpose the resultscof equations ( W-11) , ( V I I - I Z ) ,  
and (VII-13) for the Schwarzschild solution to the interval equation (IV-5) for 
uniform rotation (dropping the prime notation) one obtains to an order ( K)3/2 
the result 

w 
C 

(cdt)2 - 2  - (E.? x d r )  (cdt) 
u2 

(ds)2 = (I - -  
C2 

(VIII-I) 

where %is a unit vector along the z axis and 

- 
r = i- x + T y  + E z ,  ( VI11 -2) 

dF= (dx) + T (dy) + (dz) ( VIII -3) 

withrandTbeing unit vectors along the x and y axes, respectively. Also, 
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The identification dxo = cdt, dxi = dx, dx2 = dy, dx3 = dz was made from 
the metric written in the form 

ds2 = gik dxi dx k . 

The components of the metric tensor are 

- Y" go, = g10 - - c y  

X" 

C 
go, = g20 - - - - , 

Kx2 

9 
g,, =-I+-, 

- - I+- Y g22 - n 

- K z 2  g33 - -I+ - 
n 

- Kxy gi2 = g2i - Y 

r2 

( VIII -6)  

( VIII -7) 

( VI11 -8) 

(VIII-9) 

(VIII-IO) 

(VIII-11) 

(VIII-12) 

(Vrrr-13) 

( VIII - 14) 

( VT.T.1-15) 

(VIII-16) 

Let us at this time introduce the velocity 
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(VIE-17) 

measured in terms of the proper time, that is, by an observer located at the 
given point. Equations (IV-17) and (IV-18) must be used to calculate tne spa- 
tial element d l  . Using equation (IV-17) , components of the spatial metric ten- 
sor are obtained: 

(VIII- 18) 

(VIE- 19) 

( 1 )  VIII-2 YZ 723 = - K  -, 
r2 

2 2  
733 = 1 - K  - . 

n 

(VIII-22) 

( v111 -23) 

Substituting the above relationships into equation (IV-18) yields 

d12 = (dF * dF) - K  ( E - F x d F ) 2 .  

( VIII -24) 

Using the results of equations (VIII-7) and (VIII-24) by placing them in equa- 

l [ ,d i ? -da  - K  ('$)2 + - 02 (k. r x d r ) 2  
tion (VTII-17) results in 

C2 
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Upon squaring equation (VlII-25) it is written as 

We now substifxte equation (VIII-26) into equation (VIII-I) : 

w2 -- * 

c4 
+ - (k.rx?)2 (cdt)2 , 

(VIII-26) 

(VIII-27) 

where 
Terms of an order greater than (K)3/2 can be neglected. Hence, 

= (dF/dt). The last term can be ignored for it is of the order (K)2 .  

note that the order of accuracy of the calculations is not 105t by replacing 

- - 
r = v .  (VIII-29) 

The assumptions in equations (VIII-28) and (VIII-29) then enables equation 
( VIII-27) to be written as 

The result, equation (VIII-30) , may be considered as a more generalized value 
of the proper time of a point, whether it is at rest o r  moving in the coordinate 
system in which the physical action is being described. The result, equation 
(VIII-30), has the property of reducing to equation (IV-9) , namely 

for cases where the observations are made at ( I) a point at rest in the reference 
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coordinate system o r  (2) by a co-moving clock. In both cases, the relative 
velocity, v, is zero and the generalized proper time for this system reduces 
to the value one gets by substitution for goo and dx'. 

In the next section, a method of measuring the frequency difference of 
the two indentical atomic oscillators will be described. 

IX. MEASUREMENT OF THE FREQUENCY D I FFERENCE 

As mentioned in the last section, there is much interest in the scientific 
community to measure the frequency difference between two identical atomic 
oscillators - one based rigidly on the earth near the equatorial plane and the 
other one in synchronous orbit above the earth-based atomic oscillator. To-per- 
form this measurement, it is necessary to describe the position and motion of 
the immediate domains of the atomic oscillators. With the exception of the per- 
turbations involved, equation (Vrr-30) in section VI1 does this approximately. 
The immediate problem is how to conveniently transfer the information from one 
domain to the other domain without.seriously disturbing the physical processes 
involved. Evidently, the way to proceed is through the exchange of electromag- 
netic signals. The most serious drawback to the use of electromagnetic sig- 
nals is the Doppler effect. An attempt will be made to devise a physical scheme 
to eliminate at  least the first  order Doppler effect. 

First consider equation ( WI-25) written in the form 

J 
(IX- i) 

to the order (K) 3/2. Then define 

1 \ - -  (JJ2 
dS = [(i + - X 2 - K ,  ( d r . d r )  - K  

C2 1 
(IX-2) 

An electromagnetic wave travels with the speed of light, c; so, substituting c 
for v and using equations (IX-I) and (IX-2), one writes for the geodesic mo- 
tion of an electromagnetic wave for this system of reference 

(IX-3) I 
dt = - dS . 

C 
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4 4 

For the emission and reception of an electromagnetic wave from r, to r, 

t - t o  = 'i C d s ,  
r0 

(IX-4) 

where to20rresponds to the time of emission of the electromagnetic wave from 
a point, r,, at rest in our coorcJinate sys t e s  and t corr%spon.s to the reception 
of the electromagnetic wave at r. Suppose r changes to r + dr while t changes 
to t + dt and to changes to to f dt,. ro remains fixed. Then rewrite (IX-4) as 

4 

Subtracting equation (IX-4 ) from (IX-5) yields 

r + dr 
dt > 

I v COS e 
d t -d t ,  = - dS = r? 

or 
dt, = (i -v 'Os e )dt, 

C 

and 8 is the angle between the 
infinitesimal element d r  . * 

where v = l z l ,  d r  

(IX-6) 

( IX-7) 

direction of the electromagnetic ray and the 

The frequency of an atomic oscillator can be characterized by a certian 
number of events, say dN, per  unit proper time. For the frequency of an a- 
tomic oscillator located at ro one uses equation (VIII-30) for the generalized 
proper time to define 

v = c  (s) * 
0 

(IX-8) 

4 

Suppose an observer, moving with speed v between r and 7 + d g  receives the 
wave. The frequency received by the observer will be 

v + A v  = c(g) 
V 

(IX-9) 

* This result is to an accuracy of slightly less than I part  in IOi4. 
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Since the number of events, CW, is an invariant, the comparison is made by 
taking the ratio of equations (IX-9) to (IX-8) to get 

(IX-io) 

Upon substituting equation (IX-7) into equation (IX-IO) , one obtains 

After all expansions this yields (to orders of magnitude of - ) (”) 

Equation (IX-12) was developed for the reception of a wave, which was emitted 
by a source at  rest in our rotating coordinate system, by a moving source. For 
convenience one defines 

- 

, ( EX- 13) I v2 w &--)+ 
k r x v  + -  - (K,-K) I w2 

+c2 2 c2 
A =  + 2 7 (x2-x;) 2 

v COS e E =  - 
C 

and writes equation (IX-12) as 
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= ( i +  E +  A - /-/,) . (IX-I6) 
Av I+ - 

V 

One should now look for an expression for the wave emitted by a moving 
source and received by a fixed source in this coordinate system. The variables 
for this particular happening will be denoted by primes. 9uppose the emission 
of an electromaEetic wave takes place at  the position r ' and is received at the 
fixed position ro . 

+ 

Then one writes analogous to equation (1x4) the expression 

(IX-17) 

The minus sign on the right-hand side of equation ( I X - I .  i s f o r  Lath reversal 
of the electromagnetic wave. Again one supposes that r'-cr'+ dr'while ti -ti 
+ dti and t' -t* + dt'; then 

4 

(ti + dti) - (t' + dt') = - - 1p dS' = - 7';s' . (IX-18) 
c - +  c 4  

r' 
0 

r +  d; 

Subtracting equation (IX-17) from equation (IX-18) there remains 

V' 1 
c -  C 

;+ d; 
dti - dt' = - J dS' = - COS 9' dt' , 

r' 

o r  

dti = cos 0 3  dtf 
C 

(IX-19) 

(IX-20) 

where again 
and the infinitesimal element d r  ' . 

is the angle betwveen the direct,.ms of the electromagnetic ray 

The frequency of the emitted wave of the moving source will be defined 
similarly to equation (IX-8) to be 
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v' = (:)v' Y 

(IX-2 I) 

and the frequency received o r  observed by the observer at rest will be defined 
similarly to equation (IX-9) to be 

V I  + Avt = c (E)o . (IX-22) 

Again the two frequencies are compared by taking the ratio of equation (IX-22) 

1/2 w 4 4 -  
1/2 

to 

1 - - w2 Xf2+ K (i - 2 - k. r'xv' - <'> dt' 
i + -  Avr - - C2 C2 C 

- - xf + K') I I2  dt; (IX-23) 
V' 

0 

The result, equation (IX-20), is used to express equation (IX-23) as 

- k- r 'xv '  - - 
C2 cz/ 
w 4 4 + ,?2\1/2 

Expansion of equation (IX-24) yields 

where A , p , and E are  defined by equations (IX-13) , (IX-14) , and (IX-15). 

Figure 7 depicts the electromagnetic signal being sent from thz point of 
rest in the uniformly rotating coordinate system to a moving point at r . Imagine 
that the signal received by the moving point is reprocessed to be rebroadcast 
back to the point at rest. Suppose also there is a signal to be broadcast simul- 
taneously from the moving source whose phase is to be compared with the re- 
processed and rebroadcasted signal upon being received at  the ground. We as- 
sume that the rebroadcasted signal is not changed in any way whatsoever while 
being reprocessed from the value it had upon being received by the moving source. 
However, it is assumed that while the received signal at the moving source is 
being reprocessed to be rebroadcast that the moving source might traverse a 
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+ !e, distance 6. r . Then after these two 
signals have been emitted simultane- 
ously from the moving source and re- 
ceived by the point at rest, the moving 
source will in general have traveled a 
distance d F  (Figure 8) . 

In the case of the signal that is 
rebroadcast, equation (IX-16) is used to 
write for V' 

FIGURE 7. SIGNAL PASSAGE U P  v'= v + A v =  v ( i + E + A + p ) .  
(IX-26) 

Then from equation (IX-25) one writes 

and substituting equation (IX-26) into equation ( IX-27) : 

VI2 VI3 v , ' + A u ' = v ( ~ + E + A -  p )  i + ~ ' - A ' + p ' + 7  c 0 s 2 e ' - T c o s  
C C 

(Ix-28) 

Let us now assume that the reproczss 
time is negligibly zero F c h  g a t  6r = 0. 
Further, assume that d r  = dr f  to with- 
in the e r ror  limit of this calculation.:g 
Upon dropping the prime notation, 

d7 
6 7  

r V +  A V  = V( i +  E +  A - p )  
-b 

0 (I+ E - A + ~  

+ T ~ ~ ~ 2 e  V 2  

(IX-29) 
FIGURE 8. SIGNAL PASSAGE 

DOWN C 

One may write equation (IX-29) as 

(IX-30) 

* It is to be noted that effects of aberration and retardation have not been 
treated here. They will be treated in a later paper. 
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Now ( A  + p )  is several orders of magnitude below the accuracy requirements 
concerned here. Hence, it is dropped and one writes for equation (IX-30) 

)] . (IX-31) V2 v3 v + Av = v i + 2 E  + €2 + ( i +  E )  (-z cos26 -'E3 cos e [ C 

To the required order of accuracy: 

2 (IX-32) V V2 
2 E  = - 2 -  cos e ,  € 2 = 7  cos e y 

C C 

So equation (IX-3 i) becomes 

) . (IX-34) V2 v3 
COS e + 2 7  cos2e - 2~ COS% 

C C 

For the signal that was broadcasted simultaneously with the reprocessed and re- 
broadcasted signal, equation (IX-25)is used, dropping the primes and denoting 
Av' by 6v (to distinguish it from Av in equation (IX-34) to write 

1 (IX-35) 

V V2 v3 
i - ( A  - p )  --. COS 6 +7 cos2 6 -3 cos3 6 . 

C C C 

Now, put the equation (IX-34) through a phase divider such that its phase is 
divided by two. Hence, one writes 

(IX-36) 

Comparing equation ( IX-36) with equation (IX-35) , 

or  

Now use the definitions for A and p, equations (IX-13) and (IX-I4), respec- 
tively and write out the physical quantities: 
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v c o s e  w - - - 
' k .  r x v  V 

V 
CJ 

+ -. cos e ($)(X2 -g) + 2c 

V i v3 -- COS e ( K - K ~ ) + -  COS e . 
2c 2 c  

2GM 
c r  Recall that K = - 7 . Then one defines 

.34+ ' ( A v ) ~  = - 
2c2 

Lw2(x2 -x2) + 2 w k s r x v  + v2] . 
0 

(IX-39) 

(IX-40) 

( IX-4 I) 

It is easily seen that in view of equations (IX-38) and (IX-39) one may write 
equation (IX-37) as 

The first term on the right involves an observed change in the atomic 
oscillator frequency caused only by a change in the gravitational potential. This 
term will be measured in a forthcoming space experiment. The second term 
involves shifts in the atomic oscillator frequency caused by the motion of the 
oscillators in a coordinate system maintaining a rigid orientation relative to 
the "fixedTf stars. The third term is a possible third-order effect arising from 
a coupling between the first-order Doppler effect and the first two second-or- 
der terms mentioned above. Note that by using such a technique as described in 
this section the first-order Doppler effect has been theoretically eliminated. If 
at the moment one does not consider the possible errors  that may arise from 
perturbations the terms in equation (IX-37) are the terms to third order in the 
frequency shift that involve only the pure, spherically symmetric, gravitational 
potential difference and the relative motion between the two atomic oscillators. 

In general, the medium through which the electromagnetic signal is pro- 
pagated is not homogeneous and uniform because of atmospheric variations, etc . 
It is possible that the electromagnetic path length is not the same for a signal 
going from the ground station to the satellite (the t'uptf signal) as it is for a 
signal going from the satellite to the ground station (the "downTt signal) . A 
possible way to determine the errors  involved in this path length difference is to 
measure the frequency difference of the two oscillators at the satellite in synchro- 
nous orbit. The result should be just the negative of the equation (IX-40), i. e .  , 
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(IX-43) 

Any difference in the absolute values of equations (IX-42) and (IX-43) would 
correspond to electromagnetic path length difference between the 
signals. Possible electromagnetic path length differences could exist from con- 
sistent upward thermal air flow, which is common in the tropics. 

and l'down'' 

A final word will now be said concerning er rors  arising from perturba- 
tions, although such er rors  will be treated more extensively in a later paper. 
Sources of e r ror  to be considered are: 

I. 6 r  = 0 . This assumes that there is no time elapse between re- 
broadcast of a received signal, either at the ground oscillator or  satellite oscil- 
lator. This approximation may be valid but needs to be investigated. 

-.c 4 

2.  d r  = dr'.  This may be valid but certainly needs to be checked for 
the quarter of a second round trip of the lluptl and "down" signals. 

3. Changes in the rate of rotation of the earth. w is constant until the 
fourth significant figure. Themoon and other solar system bodies cause a slight 
change in its value. 

4. Changes in K from the spherically symmetric distribution. This is 
thought to be a sensitive source of perturbations. The four chief contributing 
factors a re  the earth's oblateness, the moon, the sun, and drag. 

5 .  Environmental factors such as changes in refractive index, magnetic 
and electric fields, solar flares, large air pockets, etc. 

6 .  Equipment errors and lixx5tations. 

7. Motion of the earth, moon, satellite system around the sun. 

These errors  will be discussed in subsequent papers. 

It should also be pointed out that the results ( E - 7 )  and (IX-20) were 
not extended to third order. This too shall be done in a later paper. 
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